Immunosuppressed Microenvironment – An Emerging Target in Prostate Cancer Management

European Oncology & Haematology, 2014;10(1):51–7

The Role of Secreted and Receptor Proteins in the Immunosuppressed Tumour Microenvironment
In addition to cellular components, other immune components of the tumour microenvironment, including chemokines and cytokines, contribute to tumour growth, progression and host immunosuppression.36,45 Interactions of cancer cells with both cellular and non-cellular components of this microenvironment are mediated via secreted and receptor proteins and specialised proteins that bind to matrix collagen, providing signals for cancer growth and metastasis. Pattern recognition receptors such the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4) expressed on tumour cells and myeloid cells in the tumour microenvironment interact with damage-associated molecular pattern (DAMP) molecules in the tumour microenvironment. This interaction leads to sustained activation of intracellular signalling pathways, promoting tumour progression.

RAGE is a membrane-bound or soluble protein that is markedly upregulated by stress and inflammatory mediators in epithelial and myeloid cells, and persistent activation of the receptor underlies many chronic diseases.46 The TLR4 is involved in many chronic inflammatory conditions and also has a major role in signalling in the tumour microenvironment. Its activation by immune cells leads to increased tumour-promoting factors, including nitric oxide synthase (NOS2) and cyclooxygenase-2 (COX2), as well the recruitment of immunosuppressive cell types that reduce host tumour surveillance and diminish therapeutic response.47 TLRs recognise DAMPs, which are nuclear or cytosolic proteins released during cell necrosis. DAMP activation of TLRs initiates signalling cascades, resulting in the release of chemokines and cytokines, pro-angiogenic factors and growth factors, which promote tumour progression. Enhanced TLR expression within the tumour microenvironments has made these molecules attractive therapeutic targets. The role of TLR4 in prostate cancer has not yet been fully established, and further studies are warranted.48

Among the ligands for RAGE and TLR4, DAMP molecules S100A8/A9 and Ca2+-binding proteins with well-known roles in inflammation, have increasingly been recognised as having major roles in tumour growth and metastasis (see Figure 3).49 While S100A8/A9 proteins are powerful apoptotic agents and, in high levels, exhibit anti-tumour properties in vitro, the expression of lower levels in cancer cells has been associated with tumour development, cancer invasion or metastasis.50 They are downregulated during normal differentiation of myeloid precursors in the bone marrow to dendritic cells and macrophages. However, tumourderived factors initiate the upregulation of S100A9. This promotes the generation of MDSCs.49,51 MDSCs express carboxylated glycans, which provide binding sites for S100A8/A9, promoting activation of intracellular signalling pathways and supporting an autocrine feedback that causes further accumulation of MDSCs, which then migrate to tumours.52 S100A8/A9 produced in the tumour microenvironment also interacts with RAGE on tumour cells and promote downstream signalling and expression of protumourigenic genes that lead to subsequent tumour progression.53

In addition to their role in MDSC generation, S100A8/A9 mediate the inflammatory and migratory potential of myeloid cells.54 S100A8/A9 have pro-inflammatory actions, and activate mitogen-activated protein kinase (MAPK) signalling pathways and NF-kB,49,55 partly mediated by their interaction with RAGE.56 S100A8/A9 proteins play an important role in metastasis, contributing to the establishment of a pre-metastatic niche comprising immature myeloid cells, MDSCs and endothelial cells, providing a microenvironment that supports the adhesion and invasion of disseminated tumour cells.49,54,55,57 They also recruit inflammatory and tumour cells to metastatic sites.54,58–60

S100A9 is strongly expressed in human prostate cancer epithelial cells,61 and high levels of S100A8/A9 have been associated with time to prostate cancer recurrence.62 Their expression in prostate cancer cell lines is increased by hypoxia and HIF-1.62 Furthermore, the presence of circulating S100A9 has been proposed as a diagnostic marker to distinguish prostate cancer from benign prostate hyperplasia.61

A recent study showed that S100A8/A9 expression in epithelial prostate cancer cells causes enhanced infiltration of immune cells, especially neutrophils, and stimulates settlement of the cancer cells in the lung.63

Both RAGE and TLR4 have been implicated in S100A8/A9 mediated effects in tumour progression. S100A9-TLR4 interaction promotes prostate tumour growth.64 Other RAGE ligands have also been implicated in prostate tumour growth.65 Which receptor is predominant depends on the tumour type, the cell types involved and glycation modifications on the receptor.49 Therefore, inhibiting the function of S100A8/A9 by small molecule inhibitors may provide a novel therapeutic approach to prostate cancer.

Therapeutic Agents Targeting Components of the Tumour Microenvironment
There has been increasing interest in novel therapies that interact with the tumour microenvironment rather than the tumour itself. A number of cancer therapies that target the tumour microenvironment are in current clinical use in other solid tumours. These include the monoclonal antibodies trastuzumab for breast and gastric cancers and rituximab for haematological malignancies; bevacizumab, sunitinib and sorafenib; and agents that inhibit osteoclast function (the bisphosphonate zoledronate and the RANKL inhibitor denosumab).66

Several microenvironment strategies are in clinical development for prostate cancer and include anti-angiogenesis, integrin signalling and immune pathways. Since prostate cancer is typically a slow-progressing disease, the use of immunotherapy is particularly advantageous in terms of targeting advanced tumours and inducing anti-tumour immunity. Immunotherapies in clinical development include vaccines and antibody-based immunotherapies targeting checkpoint inhibitors.67 Sipuleucel-T is an autologous cellular vaccine consisting of activated antigen-presenting cells loaded with prostatic acid phosphatase. In the pivotal Immunotherapy for Prostate Adenocarcinoma Treatment (IMPACT) phase III study, men treated with sipuleucel-T (n=341) had a median OS of 25.8 months compared with the placebo group (n=171), who had a median OS of 21.7 months, a relative reduction of 22 % in the risk of death compared with the placebo group (hazard ratio [HR] 0.78; 95 % confidence interval [CI] 0.61 to 0.98; p=0.03). However, no difference in PFS was noted. Adverse events (AEs) were more frequently reported in the sipuleucel-T group than in the placebo group, including chills, fever and headache.11 Based on these results, in 2010 sipuleucel-T received approval from the US Food and Drug Administration (FDA), the first therapeutic vaccine approved for any type of cancer in the US.

Ipilimumab is a fully human, monoclonal antibody (mAb) against cytotoxic T lymphocyte antigen 4 (CTLA-4), which regulates T cell responses and downregulates the immune response to tumour cells.68 Two phase III trials in the first- and second-line treatment of mCRPC have recently completed accrual.69,70 Results of one of these studies were recently reported. Men were randomised to bone-directed radiotherapy before either ipilimumab (n=399) or placebo (n=400).70 Median OS with ipilimumab was not significantly improved compared with that with placebo (11.2 versus 10 months, HR=0.85, 95 % CI 0.72–1.00; p=0.053). Treatment-related AEs were common and mainly immune-related. Patients without visceral metastases seemed to benefit more, emphasising the importance of optimal patient selection in trials evaluating vaccines and other immunotherapeutic agents for CRPC.

  1. SEER, SEER Stat Fact Sheets: Prostate Cancer. Available at: (accessed 13 January 2014).
  2. Horwich A, Hugosson J, de Reijke T, et al., Prostate cancer: ESMO Consensus Conference Guidelines 2012, Ann Oncol, 2013;24:1141–62.
  3. Gravis G, Fizazi K, Joly F, et al., Androgen-deprivation therapy alone or with docetaxel in non-castrate metastatic prostate cancer (GETUG-AFU 15): a randomised, open-label, phase 3 trial, Lancet Oncol, 2013;14:149–58.
  4. Knudsen KE, Scher HI, Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer, Clin Cancer Res, 2009;15:4792–8.
  5. Kirby M, Hirst C, Crawford ED, Characterising the castrationresistant prostate cancer population: a systematic review, Int J Clin Pract, 2011;65:1180–92.
  6. Rathkopf DE, Smith MR, de Bono JS, et al., Updated interim efficacy analysis and long-term safety of abiraterone acetate in metastatic castration-resistant prostate cancer patients without prior chemotherapy (COU-AA-302), Eur Urol, 2014; [Epub ahead of print].
  7. El-Amm J, Aragon-Ching JB, The changing landscape in the treatment of metastatic castration-resistant prostate cancer, Ther Adv Med Oncol, 2013;5:25–40.
  8. van Soest RJ, van Royen ME, de Morree ES, et al., Crossresistance between taxanes and new hormonal agents abiraterone and enzalutamide may affect drug sequence choices in metastatic castration-resistant prostate cancer, Eur J Cancer, 2013;49:3821–30.
  9. Loriot Y, Bianchini D, Ileana E, et al., Antitumour activity of abiraterone acetate against metastatic castration-resistant prostate cancer progressing after docetaxel and enzalutamide (MDV3100), Ann Oncol, 2013;24:1807–12.
  10. Noonan KL, North S, Bitting RL, et al., Clinical activity of abiraterone acetate in patients with metastatic castrationresistant prostate cancer progressing after enzalutamide, Ann Oncol, 2013;24:1802–7.
  11. Kantoff PW, Higano CS, Shore ND, et al., Sipuleucel-T immunotherapy for castration-resistant prostate cancer, N Engl J Med, 2010;363:411–22.
  12. Mendoza M, Khanna C, Revisiting the seed and soil in cancer metastasis, Int J Biochem Cell Biol, 2009;41:1452–62.
  13. Mbeunkui F, Johann DJ, Jr, Cancer and the tumor microenvironment: a review of an essential relationship, Cancer Chemother Pharmacol, 2009;63:571-82.
  14. O’Byrne KJ, Dalgleish AG, Chronic immune activation and inflammation as the cause of malignancy, Br J Cancer, 2001;85:473–83.
  15. Bhowmick NA, Neilson EG, Moses HL, Stromal fibroblasts in cancer initiation and progression, Nature, 2004;432:332–7.
  16. Weis SM, Cheresh DA, Tumor angiogenesis: molecular pathways and therapeutic targets, Nat Med, 2011;17:1359–70.
  17. Koukourakis MI, Giatromanolaki A, Harris AL, et al., Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma, Cancer Res, 2006;66:632–7.
  18. Quail DF, Joyce JA, Microenvironmental regulation of tumor progression and metastasis, Nat Med, 2013;19:1423–37.
  19. Sun Y, Campisi J, Higano C, et al., Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B, Nat Med, 2012;18:1359–68.
  20. Rosser C, Targeting prostatic tumor micro-environment to address therapy resistance, Transl Cancer Res, 2013;2:62–3.
  21. Millikan RE, Wen S, Pagliaro LC, et al., Phase III trial of androgen ablation with or without three cycles of systemic chemotherapy for advanced prostate cancer, J Clin Oncol, 2008;26:5936–42.
  22. Efstathiou E, Logothetis CJ, A new therapy paradigm for prostate cancer founded on clinical observations, Clin Cancer Res, 2010;16:1100–7.
  23. Schenk JM, Kristal AR, Neuhouser ML, et al., Biomarkers of systemic inflammation and risk of incident, symptomatic benign prostatic hyperplasia: results from the prostate cancer prevention trial, Am J Epidemiol, 2010;171:571–82.
  24. Nguyen DP, Li J, Tewari AK, Inflammation and prostate cancer: the role of interleukin-6, BJU Int, 2014;113(6):986–92.
  25. Bhardwaj N, Harnessing the immune system to treat cancer, J Clin Invest, 2007;117:1130–6.
  26. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V, Coordinated regulation of myeloid cells by tumours, Nat Rev Immunol, 2012;12:253–68.
  27. Schmid MC, Varner JA, Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation, J Oncol, 2010;2010:201026.
  28. Schmid MC, Varner JA, Myeloid cells in tumor inflammation, Vasc Cell, 2012;4:14.
  29. Talmadge JE, Gabrilovich DI, History of myeloid-derived suppressor cells, Nat Rev Cancer, 2013;13:739–52.
  30. Umansky V, Sevko A, Tumor microenvironment and myeloid-derived suppressor cells, Cancer Microenviron, 2013;6:169–77.
  31. Kusmartsev S, Gabrilovich DI, Role of immature myeloid cells in mechanisms of immune evasion in cancer, Cancer Immunol Immunother, 2006;55:237–45.
  32. Gabrilovich DI, Nagaraj S, Myeloid-derived suppressor cells as regulators of the immune system, Nat Rev Immunol, 2009;9:162–74.
  33. Ostrand-Rosenberg S, Sinha P, Myeloid-derived suppressor cells: linking inflammation and cancer, J Immunol, 2009;182:4499–506.
  34. Ostrand-Rosenberg S, Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity, Cancer Immunol Immunother, 2010;59:1593–600.
  35. Bowdish DM, Myeloid-derived suppressor cells, age and cancer, Oncoimmunology, 2013;2:e24754.
  36. Lindau D, Gielen P, Kroesen M, et al., The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells, Immunology, 2013;138:105–15.
  37. Sevko A, Umansky V, Myeloid-derived suppressor cells interact with tumors in terms of myelopoiesis, tumorigenesis and immunosuppression: thick as thieves, J Cancer, 2013;4:3–11.
  38. Giaccia AJ, Simon MC, Johnson R, The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease, Genes Dev, 2004;18:2183–94.
  39. Monu NR, Frey AB, Myeloid-derived suppressor cells and anti-tumor T cells: a complex relationship, Immunol Invest, 2012;41:595–613.
  40. Shevach EM, The resurrection of T cell-mediated suppression, J Immunol, 2011;186:3805–7.
  41. Huen NY, Pang AL, Tucker JA, et al., Up-regulation of proliferative and migratory genes in regulatory T cells from patients with metastatic castration-resistant prostate cancer, Int J Cancer, 2013;133:373–82.
  42. Sica A, Larghi P, Mancino A, et al., Macrophage polarization in tumour progression, Semin Cancer Biol, 2008;18:349–55.
  43. Nonomura N, Takayama H, Nakayama M, et al., Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer, BJU Int, 2011;107:1918–22.
  44. Nakasone ES, Askautrud HA, Kees T, et al., Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance, Cancer Cell, 2012;21:488–503.
  45. Wilson J, Balkwill F, The role of cytokines in the epithelial cancer microenvironment, Semin Cancer Biol, 2002;12:113–20.
  46. Sparvero LJ, Asafu-Adjei D, Kang R, et al., RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation, J Transl Med, 2009;7:17.
  47. Ridnour LA, Cheng RY, Switzer CH, et al., Molecular pathways: toll-like receptors in the tumor microenvironment – poor prognosis or new therapeutic opportunity, Clin Cancer Res, 2013;19:1340–6.
  48. Mai CW, Kang YB, Pichika MR, Should a toll-like receptor 4 (TLR-4) agonist or antagonist be designed to treat cancer? TLR-4: its expression and effects in the ten most common cancers, Onco Targets Ther, 2013;6:1573–87.
  49. Srikrishna G, S100A8 and S100A9: new insights into their roles in malignancy, J Innate Immun, 2012;4:31–40.
  50. Ghavami S, Chitayat S, Hashemi M, et al., S100A8/A9: a Janus-faced molecule in cancer therapy and tumorgenesis, Eur J Pharmacol, 2009;625:73–83.
  51. Gebhardt C, Nemeth J, Angel P, et al., S100A8 and S100A9 in inflammation and cancer, Biochem Pharmacol, 2006;72:1622–31.
  52. Sinha P, Okoro C, Foell D, et al., Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells, J Immunol, 2008;181:4666–75.
  53. Ichikawa M, Williams R, Wang L, et al., S100A8/A9 activate key genes and pathways in colon tumor progression, Mol Cancer Res, 2011;9:133–48.
  54. Markowitz J, Carson WE, 3rd, Review of S100A9 biology and its role in cancer, Biochim Biophys Acta, 2013;1835:100–9.
  55. Lukanidin E, Sleeman JP, Building the niche: the role of the S100 proteins in metastatic growth, Semin Cancer Biol, 2012;22:216–25.
  56. Turovskaya O, Foell D, Sinha P, et al., RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitisassociated carcinogenesis, Carcinogenesis, 2008;29:2035–43.
  57. Rafii S, Lyden D, S100 chemokines mediate bookmarking of premetastatic niches, Nat Cell Biol, 2006;8:1321–3.
  58. Hiratsuka S, Watanabe A, Aburatani H, et al., Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis, Nat Cell Biol, 2006;8:1369–75.
  59. Hiratsuka S, Watanabe A, Sakurai Y, et al., The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a premetastatic phase, Nat Cell Biol, 2008;10:1349–55.
  60. Hibino T, Sakaguchi M, Miyamoto S, et al., S100A9 is a novel ligand of EMMPRIN that promotes melanoma metastasis, Cancer Res, 2013;73:172–83.
  61. Hermani A, Hess J, De Servi B, et al., Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer, Clin Cancer Res, 2005;11:5146–52.
  62. Grebhardt S, Veltkamp C, Strobel P, et al., Hypoxia and HIF-1 increase S100A8 and S100A9 expression in prostate cancer, Int J Cancer, 2012;131:2785–94.
  63. Grebhardt S, Muller-Decker K, Bestvater F, et al., Impact of S100A8/A9 expression on prostate cancer progression in vitro and in vivo, J Cell Physiol, 2014;229:661–71.
  64. Kallberg E, Vogl T, Liberg D, et al., S100A9 interaction with TLR4 promotes tumor growth, PLoS One, 2012;7:e34207.
  65. Elangovan I, Thirugnanam S, Chen A, et al., Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth, Biochem Biophys Res Commun, 2012;417:1133–8.
  66. Saylor PJ, Armstrong AJ, Fizazi K, et al., New and emerging therapies for bone metastases in genitourinary cancers, Eur Urol, 2013;63:309–20.
  67. Thakur A, Vaishampayan U, Lum LG, Immunotherapy and immune evasion in prostate cancer, Cancers (Basel), 2013;5:569–90.
  68. Cha E, Small EJ, Is there a role for immune checkpoint blockade with ipilimumab in prostate cancer?, Cancer Med, 2013;2:243–52.
  69. Phase 3 study of immunotherapy to treat advanced prostate cancer. Available at: 57810?term=NCT01057810&rank=1 (accessed 22 November 2013).
  70. Kwon ED, Drake CG, Scher HI, et al., Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial, Lancet Oncol, 2014;15:700–12.
  71. Raymond E, Dalgleish A, Damber JE, et al., Mechanisms of action of tasquinimod on the tumour microenvironment, Cancer Chemother Pharmacol, 2014;73:1–8.
  72. Jennbacken K, Welen K, Olsson A, et al., Inhibition of metastasis in a castration resistant prostate cancer model by the quinoline-3-carboxamide tasquinimod (ABR-215050), Prostate, 2012;72:913–24.
  73. Leanderson T, Ivars F, S100A9 and tumor growth, Oncoimmunology, 2012;1:1404–5.
  74. Bjork P, Bjork A, Vogl T, et al., Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides, PLoS Biol, 2009;7:e97.
  75. Shen L, Ciesielski M, Miles KM, et al., Abstract 4746: Modulation of suppressive myeloid populations by tasquinimod, Cancer Res, 2013;73(Suppl. 1.).
  76. Isaacs JT, Antony L, Dalrymple SL, et al., Tasquinimod Is an Allosteric Modulator of HDAC4 survival signaling within the compromised cancer microenvironment, Cancer Res, 2013;73:1386–99.
  77. Olsson A, Bjork A, Vallon-Christersson J, et al., Tasquinimod (ABR-215050), a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors, Mol Cancer, 2010;9:107.
  78. Pili R, Haggman M, Stadler WM, et al., Phase II randomized, double-blind, placebo-controlled study of tasquinimod in men with minimally symptomatic metastatic castrate-resistant prostate cancer, J Clin Oncol, 2011;29:4022–8.
  79. Armstrong AJ, Haggman M, Stadler WM, et al., Long-term survival and biomarker correlates of tasquinimod efficacy in a multicenter randomized study of men with minimally symptomatic metastatic castration-resistant prostate cancer, Clin Cancer Res, 2013;19:6891–901.
  80. A study of tasquinimod in men with metastatic castrate resistant prostate cancer. Available at: show/NCT01234311 (accessed 15 November 2013).
  81. A proof of concept study of maintenance therapy with tasquinimod in patients with metastatic castrate-resistant prostate cancer who are not progressing after a first line docetaxel based chemotherapy. Avaialble at: http:// (accessed 6 June 2014).
  82. Dalrymple SL, Becker RE, Isaacs JT, The quinoline-3- carboxamide anti-angiogenic agent, tasquinimod, enhances the anti-prostate cancer efficacy of androgen ablation and taxotere without effecting serum PSA directly in human xenografts, Prostate, 2007;67:790–7.
  83. Shen l, Ciesielski M, Miles K, et al, Targeting myeloid derived suppressor cells as novel strategy to enhance immunotherapy in murine prostate cancer models. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; Mar 31–Apr 4 2012; Chicago, Il, Cancer Res, 2012;72(8 Suppl. 1):Abstract 1551.
  84. Dalrymple SL, Becker RE, Zhou H, et al., Tasquinimod prevents the angiogenic rebound induced by fractionated radiation resulting in an enhanced therapeutic response of prostate cancer xenografts, Prostate, 2012;72:638–48.
  85. Finke J, Ko J, Rini B, et al., MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy, Int Immunopharmacol, 2011;11:856–61.
  86. Lunt SJ, Chaudary N, Hill RP, The tumor microenvironment and metastatic disease, Clin Exp Metastasis, 2009;26:19–34.
  87. Murdoch C, Muthana M, Coffelt SB, et al., The role of myeloid cells in the promotion of tumour angiogenesis, Nat Rev Cancer, 2008;8:618–31.
  88. Small AC, Oh WK, Bevacizumab treatment of prostate cancer, Expert Opin Biol Ther, 2012;12:1241–9.
  89. Kelly WK, Halabi S, Carducci M, et al., Randomized, doubleblind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401, J Clin Oncol, 2012;30:1534–40.
  90. Dror Michaelson M, Regan MM, Oh WK, et al., Phase II study of sunitinib in men with advanced prostate cancer, Ann Oncol, 2009;20:913–20.
  91. Mardjuadi F, Medioni J, Kerger J, et al., Phase I study of sorafenib in combination with docetaxel and prednisone in chemo-naive patients with metastatic castration-resistant prostate cancer, Cancer Chemother Pharmacol, 2012;70:293–303.
  92. Rosenberg A, Mathew P, Imatinib and prostate cancer: lessons learned from targeting the platelet-derived growth factor receptor, Expert Opin Investig Drugs, 2013;22:787–94.
  93. Alphonso A, Alahari SK, Stromal cells and integrins: conforming to the needs of the tumor microenvironment, Neoplasia, 2009;11:1264–71.
  94. Danen EH, Integrin signaling as a cancer drug target, IRSN Cell Biology, 2013;2013: Article ID 135164.
  95. Bradley DA, Daignault S, Ryan CJ, et al., Cilengitide (EMD 121974, NSC 707544) in asymptomatic metastatic castration resistant prostate cancer patients: a randomized phase II trial by the prostate cancer clinical trials consortium, Invest New Drugs, 2011;29:1432–40.
  96. Higano CS, Understanding treatments for bone loss and bone metastases in patients with prostate cancer: a practical review and guide for the clinician, Urol Clin North Am, 2004;31:331–52.
  97. Fizazi K, Yang J, Peleg S, et al., Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts, Clin Cancer Res, 2003;9:2587–97.
  98. Loriot Y, Massard C, Fizazi K, Recent developments in treatments targeting castration-resistant prostate cancer bone metastases, Ann Oncol, 2012;23:1085–94.
  99. Body JJ, Lipton A, Gralow J, et al., Effects of denosumab in patients with bone metastases with and without previous bisphosphonate exposure, J Bone Miner Res, 2010;25:440–6.
  100. Fizazi K, Bosserman L, Gao G, et al., Denosumab treatment of prostate cancer with bone metastases and increased urine N-telopeptide levels after therapy with intravenous bisphosphonates: results of a randomized phase II trial, J Urol, 2013;189:S51–7; discussion S7–8.
  101. Fizazi K, Carducci M, Smith M, et al., Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study, Lancet, 2011;377:813–22.
  102. Smith MR, Saad F, Oudard S, et al., Denosumab and bone metastasis-free survival in men with nonmetastatic castration-resistant prostate cancer: exploratory analyses by baseline prostate-specific antigen doubling time, J Clin Oncol, 2013;31:3800–6.
  103. Smith MR, Saad F, Coleman R, et al., Denosumab and bonemetastasis- free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebocontrolled trial, Lancet, 2012;379:39–46.
  104. Sartor AO, Heinrich D, Helle SI, et al. , Radium-223 chloride impact on skeletal-related events in patients with castrationresistant prostate cancer (CRPC) with bone metastases: a phase III randomized trial (ALSYMPCA), J Clin Oncol, 2012;30 (Suppl 5):Abstract 9.
  105. Parker C, Heinrich D, O’Sullivan JM, et al., Overall survival benefit and safety profile of radium-223 chloride, a firstin- class alpha- pharmaceutical: results from a phase III randomized trial (ALSYMPCA) in patients with castrationresistant prostate cancer (CRPC) with bone metastases., J Clin Oncol, 2012;30(Suppl. 5) Abstr 8.
  106. Trump DL, Commentary on “Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial.” Smith DC, Smith MR, Sweeney C, Elfiky AA, Logothetis C, Corn PG, Vogelzang NJ, Small EJ, Harzstark AL, Gordon MS, Vaishampayan UN, Haas NB, Spira AI, Lara PN Jr, Lin CC, Srinivas S, Sella A, Schoffski P, Scheffold C, Weitzman AL, Hussain M, University of Michigan, Ann Arbor, MI, J Clin Oncol, 2013;31:412–9.
  107. Smith DC, Smith MR, Sweeney C, et al., Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial, J Clin Oncol, 2013;31:412–9.
  108. Msaouel P, Nandikolla G, Pneumaticos SG, et al., Bone microenvironment-targeted manipulations for the treatment of osteoblastic metastasis in castration-resistant prostate cancer, Expert Opin Investig Drugs, 2013;22:1385–400.
  109. Kwon ED, Drake CG, Scher HI, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial, Lancet Oncol, 2014;15:700-712.
Keywords: Castrate-resistant prostate cancer, immunosuppression, ipilimumab, tumour microenvironment, myeloid-derived suppressor cells, S100A9, tumour-associated macrophages, radium-223, sipuleucel T, tasquinimod